Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi.

نویسندگان

  • M Leipelt
  • D Warnecke
  • U Zähringer
  • C Ott
  • F Müller
  • B Hube
  • E Heinz
چکیده

Glucosylceramides are membrane lipids in most eukaryotic organisms and in a few bacteria. The physiological functions of these glycolipids have only been documented in mammalian cells, whereas very little information is available of their roles in plants, fungi, and bacteria. In an attempt to establish appropriate experimental systems to study glucosylceramide functions in these organisms, we performed a systematic functional analysis of a glycosyltransferase gene family with members of animal, plant, fungal, and bacterial origin. Deletion of such putative glycosyltransferase genes in Candida albicans and Pichia pastoris resulted in the complete loss of glucosylceramides. When the corresponding knock-out strains were used as host cells for homologous or heterologous expression of candidate glycosyltransferase genes, five novel glucosylceramide synthase (UDP-glucose:ceramide glucosyltransferase) genes were identified from the plant Gossypium arboreum (cotton), the nematode Caenorhabditis elegans, and the fungi Magnaporthe grisea, Candida albicans, and P. pastoris. The glycosyltransferase gene expressions led to the biosynthesis of different molecular species of glucosylceramides that contained either C18 or very long chain fatty acids. The latter are usually channeled exclusively into inositol-containing sphingolipids known from Saccharomyces cerevisiae and other yeasts. Implications for the biosynthesis, transport, and function of sphingolipids will be discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Growth and Stimulation of Biosynthesis Pathway of Polyphenols in Melissa officinalis L. Colonized by Arbuscular Mycorrhizal

The increasing demand for medicinal plants has amplified the importance of the development of effective methods for enhancing the cultivation of these plants. The association of arbuscular mycorrhizal (AM) fungi with medicinal plants has been found to alter the level of secondary metabolites by affecting the plant metabolism. Lemon balm (Melissa officinalis L.), is an important medicinal plant ...

متن کامل

Isolation of Monoterpene Synthase Gene (NsTPS2) and Evaluation of Terpenoid Compounds in Black Cumin Medicinal Plant (Nigella sativa L.)

Black cumin (Nigella sativa) is a medicinal plant of the Ranunculacea family which raised attention due to its pharmaceutical properties. Medical significance of N. sativa mainly attributed to its oxygenated monoterpenes which are biosynthesized via the methyl erythritol phosphate (MEP) pathway located in plastids. In this study, the essential oil components of leaves, flowers, and developmenta...

متن کامل

Enhanced Expression of Genes Involved in the Biosynthesis Pathway of Tanshinones in Tetraploid Plants of Salvia Officinalis L.

Extended Abstract Introduction and Objective: Polyploidy is one of the main factors in plant adaptation that can increase secondary metabolites production in plants. Salvia officinalis L. is a perennial plant from the Lamiaceae family with a long history of use in the medicinal industry. Tanshinones are crucial active compounds biosynthesized in Salvia. This study was aimed to analyze the expr...

متن کامل

Characterization of UDP-glucose:ceramide glucosyltransferases from different organisms.

Cerebrosides are typical membrane lipids of many organisms. They occur in plants, fungi, animals, humans and some prokaryotes. Almost all of our knowledge on the physiological functions of cerebrosides results from experimental data obtained with mammalian cells. However, very little is known about the roles played by these lipids in plants and fungi. To initiate such investigations we have clo...

متن کامل

Evolution of vitamin B2 biosynthesis: 6,7-dimethyl-8-ribityllumazine synthases of Brucella.

The penultimate step in the biosynthesis of riboflavin (vitamin B2) involves the condensation of 3,4-dihydroxy-2-butanone 4-phosphate with 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, which is catalyzed by 6,7-dimethyl-8-ribityllumazine synthase (lumazine synthase). Pathogenic Brucella species adapted to an intracellular lifestyle have two genes involved in riboflavin synthesis, ribH1 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 36  شماره 

صفحات  -

تاریخ انتشار 2001